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Note 

Extrapolation of Finite Difference Approximations 
for Bound State Equations 

A common technique for approximating the discrete eigenvalues of Sturm- 
Liouville eigenvalue problems of the type 

$ + q(x) y(x) - by(x), o<x<m, 

with ~(0) = 0 and v(x) + 0 as x ---f co, is to replace infinity by some suitably 
large number b > 0 and then treat the problem over the interval [0, b] with the 
added boundary condition y(b) = 0 by using either the central difference or 
Numerov finite difference methods. A discussion of various implementations and 
applications of these methods can be found in, for example, Cooley [2], Keller [6], 
Truhlar [9], Dickinson [3], Guest [5], and Shore [8]. The purpose of this note is 
to present experimentally observed convergence rates for the standard matrix 
implementation of these methods and to show the effects of Richardson and 
PadC extrapolation for typical potentials q(x). These extrapolation techniques have 
been recently examined for numerical integration problems by Chisolm, Genz, 
and Rowlands [l]. Guest and Shore also examined convergence rates for eigen- 
values computed by central difference and Numerov methods. Guest treats 
Richardson extrapolation while the paper by Shore is a comprehensive review 
of many approximation methods. 

Let d,: 0 = x0 < Xl < ... < x,+1 = b be a partition of (0, b) with 
xi - xipl = b/(n + 1) = h for i = l,..., it + 1. The central difference method 
approximates the eigenvalues of (1) with the eigenvalues of the matrix problem 

-KYi-1 - 2Yi + Yi+Jh21 + 4(-G) Yi = bi , i=l n, ,*.-, 
Jj,, = 0, J’n+l = 0. 

(2) 

The Numerov method approximates the eigenvalues of (1) with the eigenvalues 
of the matrix problem 

( 1 --%),,-,+($+~)JJ,+(+yy,+, 
h2 

= x (A J’i-I + ; Yi + A J’i+$ i=l n, ,***, 

3’0 = 0, yn+1 = 0. 
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(3) 
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The approximate eigenvalues h are functions of the mesh size h. Extrapolation 
procedures combine, via an approximation of this function, a sequence of computed 
eigenvalues for different values of h to obtain an extrapolated and hopefully 
improved answer. Besides the well-known Richardson technique [6], we wish to 
test two other extrapolation procedures on the eigenvalue problem based on 
PadC approximants [l], namely type I Pade approximants (P.A.) and type II P.A. 

The type I formula is used in the following way. From a sequence of computed 
eigenvalues h(h,), X(/r,), h(h,),..., one forms a series 

From this series, which terminates with either an odd or even power of g, one 
forms either a diagonal P.A., rl(g)[Nl”l (2N + 1 terms in the series), or an off- 
diagonal P.A., (1( g)t N+l*lVl (2N + 2 terms in the series). One then evaluates these 
sequences of P.A. at g = 1. Details of this procedure may be found in the article 
by Chisholm et al. 

The type II or fixed-point P.A. for the central difference method is based on the 
assumption that 

A + Bh2 + Ch4 + -.* 
‘ch) = 1 + D/,2 + ET4 + . . . . 

This form is fitted to the fixed points h(h,), h(h,),... with A then being the extra- 
polated result. This function is motivated by a consideration of the Taylor’s 
series expansion for the truncation error. With the Numerov technique, it is not 
as clear what functional form to assume. In those cases where the potential is 
singular, the above form for X(h) is adequate as the Numerov appears to converge 
like h2. However, if the potential is smooth (or can be made smooth by appropriate 
scale change) then a more appropriate form is 

A + Bh” + Ch8 + m-0 
‘ch) = 1 + Dh4 + Eh8 + . . . ’ 

In Tables I-VI, we present the results of numerical experiments in the case of 
two different central potentials. The eigenvalues X, refer to the ground state energies 
and h , &I , and hm are three different extrapolated results. The eigenvalue hr 
is the extrapolated result obtained by using type I Pade approximants on the 
sequence of eigenvalues X(h& and &r is the result using type II or fixed-point 
Padt approximants. The results of Richardson extrapolation are given by Xm . 
The number /3 is the exponent of the leading power of h in the computed extra- 
polation rates for the eigenvalue X. On both of these examples the endpoint was 
chosen to be xN = 16 and h, is the exact eigenvalue. 
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TABLE I 

Central Difference Method for V = -2/x; Aa = --I 

h 

l/2 0.05572809 - 0.05572809 0.05572809 0.05572809 

l/4 0.01515450 1.88 0.01515500 0.00163063 0.00163063 

l/8 0.00387602 1.97 -0.00046666 O.OOOOO327 0.00001542 

l/16 0.00097466 1.99 -0.00003015 O.OOOOOOO1 0.00000004 

l/32 0.00024402 2.00 O.OOOOOO29 0.00000000+ omoooooO+ 

TABLE II 

Numerov Method for V = -2/x: A, = -1 

h --I,-kh B --I\0 + XI --h, + &I --ho + &II 

112 0.09358441 - 0.09358441 0.09358441 0.09358441 

114 0.03124154 1.58 0.03124154 0.01046571 0.01046572 

l/8 0.00906178 1.79 -0.00319147 0.00080949 0.00108207 

l/16 0.00243485 1.90 -0.00038886 0.00008897 o.Om 1457 

l/32 0.00063010 1.95 0.00001956 O.OOOOO983 o.OOoO1315 

TABLE III 

Central Difference Method for V = 9; & = 3 

h A, - h B A7 - Xl b - &I 5 - 411 

l/2 0.08051590 - 0.08051590 0.08051590 0.08051590 

114 0.01967134 2.03 0.01967134 -0.00061018 -0.00061018 

118 0.00459144 2.10 0.00014929 O.OOOOO198 0.00000312 

l/16 0.00122124 1.91 O.OOOOO876 0.00000000+ 0.00000000+ 

1132 0.00030521 2.00 o.OOOOOO05 omoooooO+ 0.00000000+ 
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TABLE IV 

Numerov Method for V = xz; & = 3 

l/2 0.00358114 - 0.00358114 0.00358114 0.00358114 
l/4 0.00021586 4.05 0.00021586 -0.00090590 -0.ooo9o590 
l/8 o.ooOO1334 4.04 O.OOOOO381 O.OOOOOO68 O.OOOOO262 
l/16 O.OOOOOO83 4.01 0.00000000+ 0.00000000+ 0.000000q0+ 
l/32 o.OOoOoO05 4.05 0.00000000+ 0.00000000+ 0.00000000+ 

TABLE V 

Convergence Rate of Extrapolated he Behavior for Finite Difference Method; 
v = -2/x; A, = -1 

(h > hz) 

(l/2,1/4) 
(l/4,1/8) 
O/8,1/16) 
(1116, 1132) 

&Ix - AZ B 

0.00163063 - 

0.ooO11637 3.81 
o.OOOOO754 3.95 
O.OOOOOO48 3.99 

TABLE VI 

Convergence Rate of Extrapolated hz Behavior for Numerov Method; 
v = -2/x; h, = -1 

(h , U xEX - h, B 

(l/2, l/4) 0.01046572 - 

(114, l/8) 0.00166855 2.65 
(l/8, l/16) 0.00022586 2.89 
(l/16,1/32) 0.000028515 2.99 

The last two tables give the convergence rate of the Richardson extrapolated 
values for the case of a singular Coulomb potential. The extrapolated eigenvalue 
is hgX . 

As expected, the finite ditference method gives a convergence rate on the order 
of ha for both the singular (-2/x) and smooth (x2) potentials. The Numerov 
technique, although it has order h4 truncation error, gives a convergence rate of 
order h2 for the singular potential. For the smooth potential, its convergence 
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rate is of order h-l as verified also in Guest [5] and Shore [8]. The extrapolated /$ 
behavior of the finite difference method convergences like 11” while the extrapolated 
h” Numerov behavior for singular potentials converges like h3. In every case, 
type II Padt and Richardson extrapolation on the eigenvalue are superior to the 
type I Pad6 technique. Type II Padt approximants appear to be consistently and 
significantly better than the Richardson technique. We obtained essentially the 
same results using other examples of smooth and singular potentials. 

For the case of a singular potential of, for example, the Coulomb type, it is 
possible to make a change of variables as in Froese [4] to eliminate the singularity. 
The Numerov method will then achieve order hJ convergence when applied to the 
new problem, but we found it difficult to choose the truncation points of the inter- 
val to compare the results fairly. As [0, DJ) for the radial problem will be mapped 
into (- cx), co) by this change of variables, both -co and co have to be replaced 
by finite numbers. Although it is possible to do this so that excellent numerical 
results are then obtained, we feel it is simpler to apply the methods directly to 
the problem in radial form and apply type II Pad6 extrapolation. Pad6 approxi- 
mations have recently been used by Lavine [7], but in a different context. There, 
an integral equation formulation of (1) is used and then the kernel is replaced by 
a Pad6 approximant. A matrix approximation is then defined by numerical 
quadrature. 
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